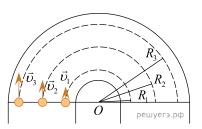

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

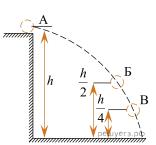
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Если m_0 — масса молекулы, n — концентрация молекул идеального газа, $a\langle \upsilon^2 \rangle$ — среднее значение квадрата скорости теплового движения молекул газа, то давление p газа можно вычислить по формуле:


1)
$$p = \frac{5}{2}m_0n\langle v^2 \rangle$$
. 2) $p = \frac{3}{2}m_0n\langle v^2 \rangle$. 3) $p = \frac{1}{3}m_0n\langle v^2 \rangle$. 4) $p = m_0n\langle v^2 \rangle$. 5) $p = \frac{2}{3}m_0n\langle v^2 \rangle$.

2. Частица движется вдоль оси Ox. На рисунке изображён график зависимости координаты x частицы от времени t. В момент времени t=4 с проекция скорости v_x частицы на ось Ox равна:

1) 2 M/c; 2) 1 M/c; 3) 0,5 M/c; 4) 0,25 M/c; 5) -0,5 M/c.


3. Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения $\upsilon_1=10$ м/с, $\upsilon_2=15$ м/с, $\upsilon_3=20$ м/с, а радиусы кривизны траекторий $R_1=5,0$ м, $R_2=7,5$ м, $R_3=9,0$ м. Промежутки времени $\Delta t_1, \Delta t_2, \Delta t_3$, за которые мотогонщики проедут поворот, связаны соотношением:

1)
$$\Delta t_1 = \Delta t_2 = \Delta t_3$$
 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$ 4) $\Delta t_1 > \Delta t_2 = \Delta t_3$ 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$

- **4.** Тело, брошенное вертикально вниз с некоторой высоты, за последние три секунды движения прошло путь $s=135\,$ м. Если модуль начальной скорости тела $\upsilon_0=10,0\,\frac{\mathrm{M}}{\mathrm{C}},$ то промежуток времени Δt , в течение которого тело падало, равен:
 - 1) 3,00 c 2) 4,00 c 3) 4,50 c 4) 5,00 c 5) 5,50 c

5. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис). Если в точке B полная механическая энергия камня W=20 Дж, то в точке E0 она равна:

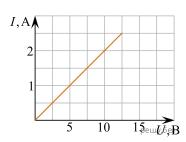
6. Шар объемом V=14,0 дм³, имеющий внутреннюю полость объёмом $V_0=13,0$ дм³, плавает в воде $\rho_1=1,0\cdot 10^3$ кг/м³, погрузившись в нее ровно наполовину. Если массой воздуха в полости шара пренебречь, то плотность ρ_2 вещества, из которого изготовлен шар, равна:

Примечание. Объём V шара равен сумме объёма полости V_0 и объёма вещества, из которого изготовлен шар.

$$1)\ 2.5\cdot 10^{3}\ \text{kg/m}^{3} \qquad 2)\ 4.0\cdot 10^{3}\ \text{kg/m}^{3} \qquad 3)\ 5.5\cdot 10^{3}\ \text{kg/m}^{3} \qquad 4)\ 7.0\cdot 10^{3}\ \text{kg/m}^{3} \qquad 5)\ 8.5\cdot 10^{3}\ \text{kg/m}^{3}$$

7. В герметично закрытом сосуде находится идеальный газ, давление которого $p=1,0\cdot 10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа $<v_{KB}>=500$ м/с,то плотность ρ газа равна:

1)
$$0.40 \text{ kg/m}^3$$
 2) 0.60 kg/m^3 3) 0.75 kg/m^3 4) 0.83 kg/m^3 5) 1.2 kg/m^3

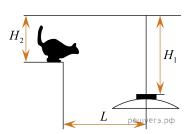

8. В некотором процессе зависимость давления p идеального газа от его объема V имеет вид $p=\frac{A}{V},$ где A — коэффициент пропорциональности. Если количество вещества постоянно, то процесс является:

9. С идеальным газом, количество вещества которого постоянно, проводят изобарный процесс. Если объём газа увеличивается, то:

- 1) к газу подводят теплоту, температура газа увеличивается
- 2) теплота не подводится к газу и не отводится от него, температура газа уменьшается
- 3) теплота не подводится к газу и не отводится от него, температура газа постоянна
- 4) теплота не подводится к газу и не отводится от него, температура газа увеличивается 5) от газа отводят теплоту, температура газа уменьшается

10. Если масса электронов, перешедших на эбонитовую палочку при трении ее о шерсть, $m = 18.2 \cdot 10^{-20}$ кг, то заряд палочки q равен:

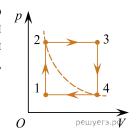
11. Проводник, вольт-амперная характеристика которого показана на рисунке, и резистор соединены последовательно и подключены к источнику постоянного тока, напряжение на клеммах которого $U=7.5~\mathrm{B}.$ Если напряжение на резисторе $U_\mathrm{R}=2.5~\mathrm{B},$ то сила тока I в цепи равна ... A.



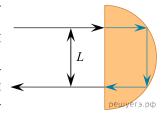
12. Два груза массы $m_1 = 0.4$ кг и $m_2 = 0.2$ кг, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых зависят от времени по закону: $F_1 = At$ и $F_2 = 2At$, где A

= 1,5 H/c. Если модуль сил упругости нити в момент разрыва $F_{\rm ynp}$ = 20 H, то нить разорвется в момент времени t от начала движения, равный ... ${\bf c}$.

- **13.** При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке с минимально возможной скоростью, модуль которой $\upsilon_{\min} = 12$ м/с. Если коэффициент трения $\mu = 0,60$, то радиуса R окружности, по которой движется мотоциклист равен ... дм. Ответ округлите до целых.
- **14.** Находящийся на шкафу кот массой $m_1 = 3,0$ кг запрыгивает на светильник, расположенный на расстоянии L = 100 см от шкафа (см. рис.). Начальная скорость кота направлена горизонтально. Светильник массой $m_2 = 2,0$ кг подвешен на невесомом нерастяжимом шнуре на расстоянии H_1 =140 см от потолка. Расстояние от потолка до шкафа $H_2 = 95$ см. Если пренебречь размерами кота и светильника, то максимальное отклонение светильника с котом от положения равновесия в горизонтальном направлении будет равно ... см.

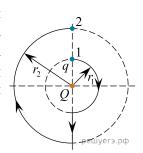


Примечание. Колебания светильника с котом нельзя считать гармоническими.

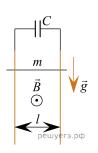

- **15.** По трубе, площадь поперечного сечения которой $S=5.0~{\rm cm}^2$, со средней скоростью $\langle \upsilon \rangle = 8.0~{\rm m/c}$ перекачивают идеальный газ ($M=58\cdot 10^{-3}~{\rm кг/моль}$), находящийся под давлением $p=390~{\rm k\Pi a}$ при температуре $T=284~{\rm K}$. За промежуток времени $\Delta t=10~{\rm muh}$ через поперечное сечение трубы проходит масса газа, равная ... ${\rm kr}$.
- **16.** Внутри электрочайника, электрическая мощность которого P=800 Вт, а теплоёмкость пренебрежимо мала, находится горячая вода c=4200 $\frac{\text{Дж}}{\text{кг}\cdot^{\circ}\text{C}}$ массой m=800 г. Во включённом в сеть электрическом чайнике вода нагрелась от температуры $t_1=90,0$ °C до температуры $t_2=95,0$ °C за время $\tau_1=30$ с. Если затем электрочайник отключить от сети, то вода в нём охладится до начальной температуры t_1 за время τ_2 , равное ... с.

Примечание. Мощность тепловых потерь электрочайника считать постоянной.

17. Идеальный одноатомный газ, количество вещества которого $\upsilon=0,400$ моль, совершил замкнутый цикл, точки 2 и 4 которого лежат на одной изотерме. Участки 1–2 и 3–4 этого цикла являются изохорами, а участки 2–3 и 4–1 — изобарами (см. рис). Работа, совершённая силами давления газа за цикл, A=332 Дж. Если в точке 3 температура газа $T_3=1156$ K, то чему в точке 1 равна температура T_1 газа? Ответ приведите в Кельвинах.

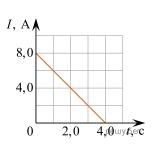


18. Узкий параллельный пучок света падает по нормали на плоскую поверхность прозрачного $\left(n=\frac{4}{3}\right)$ полуцилиндра радиусом $R=5\sqrt{3}$ см выходит из неё параллельно падающему пучку света (см. рис.). Если от момента входа в полуцилиндр до момента выхода из него потери энергии пучка не происходит, то минимальное расстояние L между падающим и вы-



ходящим пучками света равно...см. *Примечание*. Полуцилиндр — это тело, образованное рассечением цилиндра плоскостью, в которой лежит его ось симметрии.

19. На рисунке изображены концентрические окружности радиусами r_1 и r_2 , в центре которых находится неподвижный точечный заряд Q=32 нКл. Точечный заряд q=4.5 нКл перемещали из точки 1 в точку 2 по траектории, показанной на рисунке сплошной жирной линией. Если радиусы окружностей $r_1=3.5$ см и $r_2=5.9$ см, то работа, совершённая электростатическим полем заряда Q, равна ... мкДж.



- **20.** Две частицы массами $m_1=m_2=1,00\cdot 10^{-12}$ кг, заряды которых $q_1=q_2=1,00\cdot 10^{-10}$ Кл, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние l=200 см между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=15,0$ $\frac{\rm M}{c}$, а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.
- **21.** В идеальном LC-контуре происходят свободные электромагнитные колебания. Полная энергия контура W=64 мкДж. В момент времени, когда сила тока в катушке I=10 мА, заряд конденсатора q=2.1 мкКл. Если индуктивность катушки L=20 мГн, то емкость C конденсатора равна ... нФ.
- **22.** В однородном магнитном поле, модуль индукции которого B=0,50 Тл, находятся два длинных вертикальных проводника, расположенные в плоскости, перпендикулярной линиям индукции (см. рис.). Расстояние между проводниками l=8,0 см. Проводники в верхней части подключены к конденсатору, ёмкость которого C=0,25 Ф. По проводникам начинает скользить без трения и без нарушения контакта горизонтальный проводящий стержень массой m=0,50 г. Если электрическое сопротивление всех проводников пренебрежимо мало, то через промежуток времени $\Delta t=0,45$ с после начала движения стержня заряд q конденсатора будет равен ... **мКл**.

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1 = 546$ нм дифракционный максимум четвертого порядка ($m_1 = 4$) наблюдается под углом θ , то максимум пятого порядка ($m_2 = 5$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите в нанометрах.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}{
 m Au}$. Если период полураспада этого изотопа $T_{\frac{1}{2}}=2,7~{
 m cyr.}$, то за промежуток времени $\Delta t=8,1~{
 m cyr.}$ распадётся ... тысяч ядер $^{198}_{79}{
 m Au}$.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\text{M}}{c}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью $L=1{,}03$ Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2},$ то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.